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Basin of attraction in networks of multistate neurons
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The retrieval dynamics of an extremely diluted network of three-state neurons designed by the
projection rule is investigated. Depending on the parameters of the model four different fixed points
with different stability can exist. Only one of them corresponds to full retrieval. It is discussed
how the parameters of the model must be chosen in order to get perfect retrieval and large basins
of attraction. Finally it is shown that a network of three-state neurons storing binary patterns has
better retrieval properties than a network of binary neurons storing the same patterns.

PACS number(s): 87.10.4+e, 64.60.Cn, 75.10.Nr

Recently there has been much interest in the properties
of neural-network models with grey-level neurons [1-4].
Unlike the bistable McCulloch-Pitts neuron which is ei-
ther “on” or “off” these neurons allow for intermediate
levels of activity. On the other hand their dynamics is
still that of linear threshold elements. This keeps the line
to neurophysiologically motivated models using graded
neurons [5-9] which is lost if one considers more general
multistate neuron models using Potts-type interactions
[10-13].

Networks of grey-level neurons can function as asso-
ciative memories storing grey-toned patterns much the
same as networks of McCulloch-Pitts neurons storing bi-
nary patterns. The maximal storage capacity has been
determined using the methods of Gardner [14] and a vari-
ant of the Adatron algorithm was put forward as a fast
learning algorithm [4]. In the present paper we complete
the picture by investigating the retrieval dynamics in de-
tail.

To this end we consider an extremely diluted network
[15] for which one can derive closed evolution equations
for the macroscopic order parameters. For simplicity we
consider three-state neurons with the possible activity
levels —1, 0, and 1. Models of this type with Hebbian
synaptic couplings have already been studied both an-
alytically [1] and numerically [2]. However, as known
from the case of binary neurons, the retrieval dynamics
of networks designed by more sophisticated learning rules
giving constant or optimal stabilities is qualitatively dif-
ferent from the Hebbian case. In particular an unstable
fixed point of the order-parameter flow emerges charac-
terizing the typical size of the basins of attraction.

The model consists of N three-state neurons S; =
0,+1. On average each neuron is connected with C <«
logN randomly chosen other neurons via synaptic cou-
plings J;;. The neurons are updated in parallel according
to their local fields

Bi(®) = == 3 TS5 (0) (1)
J

using the rule (see Fig.1)

1 if 9 < hi(t)
Sit+1)=4{ 0 if -6<h(t)<6 (2
-1 if h,,(t) < —46.

For 6 = 0 we recover the usual dynamics of binary neu-
rons. The synaptic couplings J;; are determined such
that p = aC patterns {¢!'} are fixed points of the dy-
namics (1),(2). The patterns are randomly generated
from the distribution

P(el) = (1-a) 8(&/) + 5 [6(6F +1) +8(64 —1)].  (3)

In the following we will call a site ¢ with £ = 0 a passive
site and one with £/ = +1 an active site of pattern p.

The dynamics of a neuron configuration S;(t) corre-
lated with the first pattern and uncorrelated with the
other patterns is most clearly described by three macro-
scopic order parameters: the overlap at the active sites
of pattern 1

1 1
m(t) = — Za Si(t), 4)
the activity at these sites
1
Aa(t) = — Z; &1 1S: ()1, (5)
S(+1)
1 -
1 1
) ) he)
ak
FIG.1. The neuron activity function for symmetric three-

state neurons.

1397 ©1993 The American Physical Society



1398 M. BOUTEN AND A. ENGEL 47

and the activity at the passive sites of pattern 1

Ay(t) = Ty 20— I 10 ©)

Specifying the learning rule J;; = J;;(¢) one can de-
rive evolution equations for these order parameters in
the usual way [15,16]. Here we will consider the pseu-
doinverse rule

1
— S et =Rl (7)
T2

which makes the patterns {¢/'} fixed points of the dy-

namics (1), (2) if « is taken larger than 6. Imposing the

usual normalization condition 3=, Jizj = C, the stability

parameter & is related to the storage capacity a. by [17]
1

%= T ®)

From Egs. (7), (1), and (2) we get the following dynamics
of the order parameters (4)—(6):

1 = 3 [ (KEOL0Y g (mO=0)],

o(t) o(t)
(9)
At +1)=1- % [erf (%)
—er km(t) — 6
(% )] 1o
Ap(t+1)=1—erf <%> , (11)

where
o?(t) = 2[(1 — @) Ap(t) + a(Aa(t) —m*(t)]. (12)

The three-dimensional flow (9)-(11) can be reduced to a
two-dimensional one by introducing the overall activity

A(t) = (1 —a) Ap(t) + a A.(2). (13)
We then get
1 km(t) + 6 km(t) — 6
m(t+1) = 3 [erf (T) + erf (—U~(t)—>] ,
(14)

A(t+1)=1— (1 —a)erf (i)

o(t)
_al g km(t) + 6 —er km(t) — 6
2[ () e (g )]
(15)
where now o(t) is given by
a%(t) = 2 [A(t) — am?(2)]. (16)

These equations are similar to the case of Hebb couplings

[1], the main difference being the appearance of m(t) in
o(t).

In order to characterize the order parameter flow
(14),(15) it is useful to determine its fixed points. First
we see that m = 0 is an invariant line corresponding to
the dynamics of neuron configurations uncorrelated with
the couplings. In this case we get from Eq. (15):

A(t+1)=1—erf ( (17)

6
,/2A(t)> '

Therefore we always have a fixed point with A = Az = 0.
It is an obvious consequence of the dynamics (2) and
means that all neurons are simply turned off. For 6 <
0. = 0.575 there is, however, another attractor on the
m = 0 line corresponding to a nonzero self-sustained ac-
tivity Ags of the network, which is not correlated with the
patterns. The value of Ag depends only on 6. It increases
from Ag = 0.25 at 6 = 0.575 with decreasing 6 and tends
to one for # — 0 . For 8 = 0 it is of course nothing but
the nonretrieval fixed point known from the dynamics of
binary neurons. Since these two fixed points, which will
be denoted by Z and S, respectively, concern configura-
tions uncorrelated with the patterns, they are the same
for all learning rules giving rise to synapses normalized
to > j ij = C. In particular they are present also for
Hebb couplings [1].

In addition to these nonretrieval fixed points there can
exist two fixed points R and R* with nonzero values of m.
The first of them corresponds to full retrieval, i.e., m =
1,A=aq. Itexistsforall® > 0and for =0ifa = 1. The
nature of the second fixed point can best be understood
by considering the limit kK — oo (or equivalently a —
0). Then also m = 1 is an invariant line. This means
that at the active sites the neuron configuration is fully
aligned with the pattern. On the other hand the neurons
at the passive sites are decoupled from the rest and can
either be off (this corresponds to the fixed point R) or
can establish a self-sustained activity A, > 0. Indeed
for Kk — oo we find from (9) and (10) m = A, = 1 and
therefore (11) and (12) simplify to

Ap(t+1)=1—erf(

V21 -a)4,(t) )

Comparing (18) with (17) we see that for 8 < 6.4/1—a
it is possible to find a nonzero self-sustained activity at
the passive sites and therefore a second attractor R* on
the m = 1 line. For finite k the active and passive sites
are not completely decoupled and a self-sustained activ-
ity at the passive sites will give rise to a slight reduction
of m.

Let us now discuss the implications of the order param-
eter flow for the retrieval dynamics of the network. The
model has three parameters: the pattern activity a, the
pattern stability x, and the width 26 of the zero-activity
interval of the neuron activity function. Depending on
the value of these parameters quite different phase dia-
grams can be found. Rather than to list these possibili-
ties we try to discuss those parameter regions which are
interesting for associative recall of patterns, concentrat-
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FIG. 2. Typical flow diagra:l for the overlap and the ac-

tivity in a network of three-state neurons. The squares de-
note the fixed points discussed in the text. The parameters
are a = 0.6, 0 =0.34, x = 1.13.

ing in particular on the new features introduced by the
three-state nature of the neurons. Let us for the time
being fix a = 0.6 so that a pattern has approximately
the same number of 0’s as +1’s.

Figure 2 shows a typical plot of the fixed points and
separatrices of the order parameter low. Most of the ini-
tial conditions are attracted by the fixed point R* which
gives only approximate retrieval. The basin of attraction
of the full-retrieval fixed point R is on the other hand
very small. It seems advantageous to increase the value
of # in order to suppress the fixed points S and R*. Then
it is very easy to decide from the output whether the net-
work has identified the pattern or not, since in the latter
case it simply turns off. Looking at the plot of the sep-
aratrices for such a situation, however, one realizes that
the basin of attraction of the full-retrieval fixed point R
would be small unless k is rather large implying a low
value of a (Fig. 3).

Smaller values of 8 can yield larger basins of attraction.

A

FIG. 3. Separatrices between the fixed points Z and R for
a=0.6, 8§ =0.6, and x = 1.1, 1.2, 1.3 (from top to bottom).
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FIG. 4. Dependence of kg on 6. Above the line there are
large basins of attraction of the patterns, below most initial
configurations are attracted by the fixed point S (cf. Figs. 5
and 6).

This is due to the fact that the fixed point S, though an
attractor on the m = 0 line, becomes unstable with re-
spect to positive values of m if k is larger than a critical
value kp(#). This is similar to the instability of the non-
retrieval fixed point m = 0 for binary neurons if £ > 1.25.
From (14) and (16) it is easy to derive the expression for
kp in terms of the activity Ag(6):

2
kp(6) = % exp {2—%;} . (19)

For 6 = 0, one has Ag = 1 so that kg = \/7/2 = 1.25.
For general values of 6, the function xkp(6) is shown in
Fig. 4. The minimal value of kg is 1.111 and corresponds
to 8 = 0.45. In Figs. 5 and 6 it is shown how the flow
diagrams differ for values of & slightly smaller and slightly
larger than k. For kK < kg, S is a stable fixed point
and attracts almost all initial configurations (Fig. 5).
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FIG. 5. Flow diagram for a = 0.6, § =043, k = 1.0 <
x£B(0). The basin of attraction of the retrieval fixed point R
is small.
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FIG. 6. Flow diagram for a = 0.6, § =043, x = 1.12 >
xB(0). The basin of attraction of R is large.

For k > kB, S becomes a saddle and now practically all
initial conditions will eventually flow to the full-retrieval
fixed point R (Fig. 6). Note that the value of kp for
binary neurons is about 1.25 corresponding to ag = 0.39,
whereas here an optimally chosen 8 allows for kg = 1.11
corresponding to ag = 0.45.

In order to achieve large basins of attraction in a net-
work of three-state neurons one can therefore use quite
generally the following strategy. First # should be smaller
than 6. = 0.575 in order to establish the fixed point S.
Otherwise the zero fixed point Z attracts too many initial
configurations. Then 6 and « should be chosen such that
& > rp(0) because only then is S a saddle and most of the
initial conditions will flow to the full-retrieval fixed point
R (Fig. 6). On the other hand 6 must be large enough
in order to suppress the fixed point R* which, when it
exists, has a large basin of attraction (Fig. 2). Hence de-
pending on a a rather narrow interval 6,4/1 —a < 6 < 6,
for 6 can be given, from which the value of 6 with the
smallest kxp(#) may be chosen.

Finally it is interesting to discuss the case a = 1,
i.e., storage of binary patterns in a network of ternary
neurons. Figure 7 shows a flow diagram for 6 = 0.43
and k = 1.12. Practically all initial configurations with
m(t = 0)> 0 are attracted by the retrieval fixed point
R. This is also the case for initial states with activ-
ity A = 1, even though the value of k is smaller than
the value kg = 1.25 for binary neurons. In a network
of binary neurons storing the same patterns the initial
overlap must exceed a critical value m,. in order to en-

0 1

FIG. 7. Flow diagram for a = 1, 6 = 0.43, k = 1.12. The
cross on the A = 1 line gives the value of m at the unstable
fixed point of a network of binary neurons.

sure that the initial configuration will converge to the
retrieval fixed point. The value of m, for the parameters
given is indicated in Fig. 7 by the cross on the A = 1
line. As far as the basin of attraction is concerned it is
hence advantageous to store binary patterns in a network
of multilevel neurons. The reason for this is easy to un-
derstand qualitatively. In the case of binary neurons, the
neurons in the initial configuration that are antiparallel
to the pattern contribute significantly to the local fields
and can block the way to the retrieval attractor. In the
case of ternary neurons these neurons are very likely to be
turned off in the first time steps, i.e., there is a quick pro-
cess of reducing the activity from its starting value 1 (cf.
Fig. 7). Then the misaligned neurons do not contribute
to the local fields and the correlations with the pattern
can slowly increase. Only at the end, when m tends to
1, will the activity grow again and finally reach its initial
value. The zero-activity interval —6 < h(t) < 6 in the
neuron-activity function reduces the degree of frustration
and may allow for retrieval also in situations where for
0 = 0 no retrieval is possible.

It is straightforward to extend the above analysis to
networks of three-state neurons designed by the optimal
Gardner prescription [14]. Since for binary neurons the
basins of attraction show a very similar dependence on
a for both learning rules we expect that also in the case
of ternary neurons the results for the Gardner rule will
be qualitatively the same as those for the projection rule
obtained in the present paper.
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